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 Executive Summary  
 
The Coral Reef Watch program of NOAA develops and provides remote sensing tools for the 
conservation of coral reef ecosystems. Reef managers and other stakeholders have expressed a 
desire for higher resolution monitoring tools than those currently available. In moving to higher 
resolution global products, Coral Reef Watch faces the challenge of orders of magnitude 
increase in the size of datasets. Traditionally this would mean simply upgrading to faster x86 
Intel-based systems however Intel performance per processor has peaked due to frequency 
scaling issues. Newer Central Processing Unit (CPU) development has adopted a path of 
multiple cores rather than increasing an individual CPU’s performance. To take advantage of 
newer hardware, a change to parallel programming methods is required and fortunately satellite 
datasets are relatively well suited to parallel algorithms. 
 
However, a newer form of commodity parallel hardware, the Graphic Processing Unit (GPU) is 
significantly advancing in both speed and performance, pushed hard by the demand of consumer 
gaming enthusiasts. Companies such as AMD(ATI) and NVIDIA, recognizing the applicability 
of the latest hardware for high performance and scientific computing, have provided tools to 
allow programmers to develop software for these numeric computing engines. For tasks that lend 
themselves to parallel processing, this type of program, known as General Purpose GPU 
(GPGPU) computing is providing improved performance compared to solely using traditional 
CPUs. 
 
We compare the performance of a current high-end quad core Intel CPU and a 480 core NVIDIA 
GPU with two representative algorithms on a well-known climate record quality dataset – the 
Pathfinder SST dataset. This dataset currently consists of 29 years of global daily SST 
measurements at 4 km resolution – approximately 33 million pixels for each day. 
 
Two algorithms representing a very simple (SST persistence gap fill) and a more complex (SST 
exponential decay over time) gap filling algorithm were used to assist with the comparative 
assessment. Although comparing computational performance, I/O (input/output) performance is 
also important due to the large quantity of data and so we optimize I/O with advanced 
filesystems and a solid-state drive (SSD). 
 
The GPU processing shows a marked improvement (2.4-times faster) over the CPU for the 
simple algorithm. For the more complex algorithm, the performance increase improves to a 
factor of 3.3. It is of note that the time required to input and output data is significant in the 
context of the gap filling algorithms employed. 
 
The disadvantages of utilizing GPU for computing are the requirement of using a more rigorous 
programming language (e.g., ‘C’) rather than a high-level programming language such as IDL, 
which is widely used in the field of satellite remote sensing, and being familiar with the 
programming techniques and constraints related to the GPU software development tools. 
However the performance benefits are significant, demonstrating that using GPU tools can 
reduce computation time several-fold. 
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1. Introduction 
 
Coral Reef Watch (CRW) is a program of the National Environmental Satellite Data and 
Information Service (NESDIS) of the U.S. National Oceanic and Atmospheric Administration 
(NOAA) and a part of the NOAA Coral Reef Conservation Program (CRCP). Coral Reef 
Watch’s mission is to provide remote sensing tools for the conservation of coral reef ecosystems. 
Through these remote sensing tools, CRW assists in the management, study, and assessment of 
impacts of environmental change on coral reef ecosystems. Over more than a decade, Coral Reef 
Watch has developed a decision support system including many suites of monitoring and outlook 
products for coral reef managers and scientists. Coral Reef Watch’s operational satellite data 
products, such as coral bleaching HotSpots and Degree Heating Week products based on satellite 
sea surface temperature (SST) measurements, provide current reef environmental conditions 
globally to quickly identify areas at risk for thermally-induced mass coral bleaching. Prolonged 
high thermal stress can cause corals to lose their symbiotic algae and thus effectively starve. In 
the event of severe thermal stress, disease and mortality may follow. At present, CRW also 
provides experimental products that monitor ocean acidification; duration of low-wind 
conditions; short-term trends in SST; bleaching potential based on combined effects of light and 
temperature; the risk of coral disease outbreak; and climate model-based seasonal outlooks of the 
potential for bleaching-level stress. 
 
Mass coral bleaching events are well correlated with thermal stress (e.g., Dennis and Wicklund 
1993, Winter et al. 1998, Hoegh-Guldberg 1999, Berkelmans 2002). Thus, continuous 
monitoring of SST and bleaching thermal stress at the global scale provides reef managers, 
researchers and stakeholders with critical information to understand, predict and monitor the 
development of mass coral bleaching and assist in improved, informed management and guiding 
in situ survey should mass coral bleaching occur. 
 
Current technologies cannot provide gapless global monitoring of SST due to various 
atmospheric and oceanic issues, including the presence of cloud, high variability of coastal-zone 
water temperatures, and satellite coverage. Thus, the provision of a gap-free SST dataset is of 
critical importance to the thermal stress monitoring by CRW, and in turn, resulting predictions of 
coral bleaching incidence and severity. 
 
To date, CRW’s satellite products have been produced at one half-degree spatial resolution; that 
is, roughly 50 km in pixel size; since the 1990s. During the past few years, global satellite SST 
datasets at higher spatial resolutions, including 11, 7, 4, and 1 km, have become available; 
through the same period, coral reef stakeholders have requested finer-scale monitoring tools to 
aid in management.  As a result, CRW has been developing next generation products utilizing 
the higher resolution global near real-time satellite data for improved monitoring and prediction 
of the coral reef environment. However, there are significant scientific and computational 
challenges in migrating to higher resolution on both regional and global bases and providing 
proven, trustworthy products for coral focused decision-making. The computational challenges 
and proposed solution will be discussed in this report. 
 
Analysis and processing of global resolutions at 50 km, while demanding, is not overwhelming 
for current x86 desktop systems. However the source data, and thus CRW’s development and 
production of next generation products, are moving to higher resolutions such as 4 km and 1 km. 
A resolution change from 50 km to 4 km alone means over two orders of magnitude increase in 
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data size. Regional datasets continue to be feasible in short timeframes; however, processing of a 
global dataset at 4 km and higher resolution becomes very lengthy using CRW’s traditional data 
processing methods (i.e., the use of standard x86 Central Processing Unit (CPU) machines). Not 
only will the length of a single processing run significantly increase but also the time required for 
scientific analysis and the ‘change->validate->change->validate’ software development cycle 
will increase by even higher magnitudes. The increase in processing times can be of the order of 
days rather than hours. 
 
The method traditionally used to deal with increased data volume – simply acquiring ‘faster’ 
computers – is unfortunately not as applicable as it used to be. The approach known as frequency 
scaling, whereby semiconductor manufacturers increase CPU frequency, has driven faster and 
faster CPUs over time.  However, frequency scaling effectively ended in 2004 when Intel 
cancelled their single core development program1

 

. As further frequency scaling causes 
overheating in the CPU unit, Intel moved to multi-core development that builds multiple cores 
into a single integrated circuit die. With parallel computing now the dominant paradigm in 
computer architecture, taking advantage of parallel computing is of significant interest in the 
software development community. 

However, the amount of performance gained by the use of a multi-core processor depends very 
much on the software algorithms and implementation. In particular, the possible gains are limited 
by the fraction of the software that can be parallelized to run on multiple cores simultaneously. 
Thus, to enjoy performance improvements with each new generation of microprocessors will 
require software consisting of parallelized programs, in which multiple threads of execution 
cooperate to achieve the result faster. 
 
Multi-core CPU systems certainly extend the accessibility of parallel hardware and boost the 
computing speed significantly, but at the same time, the technical advance in a relatively new 
class of device widely available on most of computers, the ‘many-core’ Graphics Processing 
Unit (GPU), allows for boosting the computing speed to an even greater extent. 
 
The popularity of consumer computer games has significantly accelerated the adoption of 3D 
graphics in consumer computing. Beginning with transform and lighting computation, there has 
been a progression to the point now where the software developer has control over the exact 
computations that can be performed. Recognizing that markets exist beyond game graphics, GPU 
vendors have included new components designed strictly for general-purpose computation. 
These general-purpose GPU (GPGPU) programs address problems in non-graphics domains 
(Owens et al. 2007). 
 
Coral Reef Watch conducted an investigation to evaluate the performance differential between a 
recent high-end 8-core Intel CPU and a 480-core NVIDIA GPU for two representative satellite 
SST data processing tasks. The Version 5 NOAA/NASA Pathfinder 4 km SST dataset was used 
in the test because of its high quality, high spatial resolution, and long time series for a satellite 

                                                 
1 New York Times (May 8, 2004) – Intel halts development of 2 new microprocessors, 

http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007 
(accessed September 10, 2010). 
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data record. Additionally, this dataset will be used as a primary historical dataset for developing 
CRW’s next generation products. 
 
The design of this investigation and its results, along with the background on the GPU 
computing and the Pathfinder dataset, are described and discussed in this report. 
 

2. High Resolution Satellite Data 
 
The Advanced Very High Resolution Radiometers (AVHRR) onboard NOAA’s Polar-Orbiting 
Environmental Satellites (POES) enjoy an unbroken, nearly 30-year history of observation from 
the same class of instrument (Kilpatrick, et al. 2001). These AVHRR Sea Surface Temperature 
(SST) observations date from 1981 and will continue perhaps another five to ten years into the 
future onboard the remaining NOAA polar-orbiting platforms and the European MetOp 
satellites. However, changes of data source as satellites are replaced, changes in instrument 
sensitivity during their lifetime, and changes in satellite orbit have resulted in variations in the 
precision, accuracy, and mean of the AVHRR SST data through time. The Pathfinder SST 
program has a long history of reprocessing AVHRR observations to create accurate and 
consistent SST data records. Over more than a decade, Pathfinder SST has evolved over many 
versions with improved consistency and increased spatial resolution. At Version 5.0, it provides 
a global daily (daytime and nighttime) SST dataset at 4 km resolution for 1985-2009, with a new 
supplemental Version 5.1 that extends the time series to include the data for 1981-1984. 
 
NOAA Coral Reef Watch’s (CRW) operational product suite began in December 2000; as such, 
CRW has employed the Pathfinder datasets as a core long-term SST climate record dataset for 
coral reef environmental assessment and its satellite product improvement and development. At 
4 km spatial resolution, a single piece of Pathfinder Version 5 daily daytime or nighttime global 
coverage data encompasses 8192 by 4096 pixels, which gives roughly 33 million pixels per day, 
for almost every day in a near 30-year period from 1981 to 2009. This dataset is expected to add 
new years on an approximately annual basis. 
 
The SST values, quality assessment, and associated metadata are stored in HDF4 (Hierarchical 
Data Format 4) – a commonly used scientific data format. A quality flag, which ranges from 0 to 
7 with 0 unusable and 7 at highest quality, is assigned to each SST value, indicating the overall 
quality of each SST value based on a hierarchical suite of quality screenings performed. A low 
quality assessment can result from any combination of cloud cover, sun glint, large sensor scan 
angle, or inconsistency with climatological reference temperature and/or with SST observations 
at neighboring pixels, among others. To reduce the size of the dataset, SST values are stored as 
16-bit integer format (‘short integer’) that preserves the precision of the original floating type 
(satellite SST values are accurate to the first decimal place) by applying a scale factor and an 
offset. Quality flag data are simply in 8-bit format. 
 
The size of this dataset provides challenges for timely data processing and analysis. Using CPU 
only computation, input/output (I/O) subsystem performance bounds can be reached as both SST 
and quality flag data at 33 million data elements per day are read and a corresponding per pixel 
output produced. Computational constraints also can be reached when using algorithms that 
perform temporal and/or spatial calculations. An improved computational mechanism was both 
desired and necessary. 
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The next Pathfinder SST dataset, Version 6, is expected to include daily data at 1 km spatial 
resolution, incorporating high-resolution passes of significant coral reef areas, namely the 
Caribbean, Eastern Australia and parts of the Western Pacific (Casey, et al. 2010). Thus, an 
additional order of magnitude increase from 4 km will occur in the not too distant future. This 
emphasizes the importance of having appropriate computational mechanisms in place to ensure 
reasonable time for product development and timely processing of near real-time decision 
support system products, for both providing reef managers and stakeholders critical information 
with resolution appropriate to their needs and exploring scientific opportunities that much higher 
resolutions may offer. 
 
In addition to needing to process Pathfinder datasets, the next generation Coral Reef Watch 
decision support system will provide higher-resolution products, fully utilizing the high 
resolution near real-time global satellite data that have recently become available at 11, 5, and 
even 1 km spatial resolutions. The new generation products will be produced on a daily basis. 
Hence, high computing performance is required to facilitate such a decision support system for 
coral reef management. 
 

3. IDL Programming Language 
 
IDL (Interactive Data Language) is a programming language developed, provided and licensed 
by ITT Visual Information Solutions and is commonly used for interactive processing, analysis, 
and visualization of large amounts of data, including image processing. It has been widely used 
in the field of environmental satellite remote sensing and is one of main scientific computer 
programming languages used intensively in NOAA NESDIS, including the Coral Reef Watch 
program. The language does not require the user to specify types (it is dynamically-typed) or 
manage memory allocation/de-allocation (it uses automatic garbage collection) and only requires 
partial compilation to an intermediate code. It is vectorized; i.e., designed to allow the same 
operation (add, sum, mean, etc.) to occur over a single vector, matrix or higher dimensional 
arrays that are common in scientific datasets. The compiler and debugger are packaged into the 
open source Eclipse IDE and provided as a single product. 
 
The IDL programming environment has the benefits of being an ‘all-in-one’ piece, making it 
simple to install. The dynamic typing relaxes syntax constraints for the programmer (however, 
errors are more likely caught in runtime than at compile time), and the array processing 
capability and interpreted nature make it suitable for both scientific dataset analysis and non-
specialist programmers such as scientists. 
 
For multi-core CPU work, the disadvantage with IDL is that thread support (i.e., the ability to 
run multiple processes) is not available to the programmer2

 

. Instead, the programmer calls 
language functions, which may be threaded internally. Dependent on the internal threading 
(which is unknown to the programmer), multiple cores may or may not be used. 

                                                 
2 Why not expose threads at the IDL user level?  http://www.ittvis.com/services/techtip.asp?ttid=3252#Q12 

(accessed September 10, 2010) 
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With the continuous improvement, enhancement, and evolution of IDL, currently at Version 8.0, 
it has become more sophisticated and now includes functionality that is available in other widely 
used scientific programming languages. As a result, NOAA NESDIS will likely continue to use 
IDL for the foreseeable future and IDL will remain an important programming tool to Coral Reef 
Watch. Hence, in this report, IDL programming will be investigated to evaluate its performance 
in some selected intensive tests of data manipulation and processing of high resolution 
Pathfinder SST on a high-end multi-core CPU computer and to compare with GPU 
programming. 
 

4. General Purpose GPU Computing Architecture 
 
The Central Processing Unit (CPU) is the primary element of a computer system carrying out the 
computer's fundamental functions and the instructions of computer programs, including the basic 
arithmetical, logical, and input/output operations of the system. The term CPU has been used 
since at least the early 1960s. The design and implementation of CPUs have evolved 
dramatically over time, but not until mid-2000s were multi-core CPUs developed and 
implemented on most computers. 
 
A Graphics Processing Unit (GPU) is a specialized microprocessor designed to offload graphics 
rendering from the main processor to accelerate computing. It is now commonly used in 
computers, mobile phones, and game consoles. Starting to take form in the 1970s, GPUs were 
not programmable by the user until the 2000s. Present mainly on computer’s video cards and 
occasionally on motherboards, modern GPUs are very efficient at rendering and manipulating 
computer graphics through their highly parallel structure, which makes them more effective and 
much faster than general-purpose CPUs for a range of complex algorithms. Nowadays, more 
than 90% of desktop and notebook computers have integrated GPUs. A modern GPU can contain 
hundreds of cores that allow parallel processing for hundreds of threads. 
 
A GPU does not take away the fundamental functions carried out by a computer’s CPU and does 
not control the instructions of computer programs, but it can share and carry out many 
computationally-intensive tasks that were previously carried out only by the CPU – running 
much more efficiently and faster by threading computing tasks to hundreds of GPU cores. This is 
not done internally by a computer system, but through user GPU programming. Only certain 
processes can be performed on GPUs and these programs almost always use the dedicated GPU 
memory. 
 
A CPU seeks to run one (or a few) processes (or more strictly speaking ‘threads’) as fast as 
possible, depending on the number of cores that it contains (usually less than 10). A GPU seeks 
to run a very large number of threads concurrently, albeit perhaps individually more slowly than 
a CPU. The latter objective arises from the primary historical function of the GPU which was 
(and often still is) the offloading of enormous numbers of floating point calculations for 2D or 
3D graphics purposes. This GPU design philosophy is forced by the fast growing video game 
industry that exerts tremendous economic pressure for the ability to perform a massive number 
of floating-point calculations per video frame in advanced games. Thus, GPUs are essentially 
numeric computing engines and have been designed from the outset for parallel processing. 
 
GPUs will continue to evolve at a fast pace. Both Intel and AMD, two major chip manufacturing 
companies, have publically stated they will be incorporating GPUs onto the same die as the CPU 
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in future planned architectures3,4

 

 and have released initial products. With the future ubiquitous 
presence of GPUs, software and software development tools have been developed and will 
evolve to take advantage of the powerful GPU capability. The applicability of GPUs to high 
performance computing has become more and more evident, resulting in newer generations of 
GPU architecture and associated support software for general-purpose GPU (GPGPU) programs. 
NVIDIA’s recent GeForce 400 series, often referred to as the ‘Fermi’ architecture, is an example 
of such, employing 3 billion transistors. The 400 series card supports (in some options): 

• C and C++ programming languages 
• IEEE-754-2008 compliant 32-bit and 64-bit precision 
• Up to 512 cores 
• Error Correction Code (ECC) memory 
• Concurrent execution of different kernel functions 
• Up to 6GB of high-speed GDDR5 Dynamic Random Access Memory (DRAM) 

 
 

 
Figure 1. NVIDIA GeForce 400 series card – GTX480 
(http://en.wikipedia.org/wiki/File:Nvidia_GeForce_GTX480.jpg, 2010). 
 
NVIDIA uses the branding ‘Tesla’ to refer to GPU hardware specifically designed for high-
performance computing. Australia’s Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) has invested in Tesla GPU hardware to build a supercomputer cluster5

 

 
and more GPU cluster developments are likely to occur in the near future. ‘Fermi’ class Tesla 
hardware became available to the general public in late 2010.  

                                                 
3 The AMD Fusion Family, http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx (accessed September 10, 2010) 
4 CNET, (September 16, 2010) – Intel’s Sandy Bridge graphics tech: How good is it?  http://news.cnet.com/8301-

13924_3-20016628-64.html (accessed September 20, 2010) 
5 Speeding Up Science, CSIRO’s CPU-GPU Supercomputer Cluster, http://www.csiro.au/resources/GPU-

cluster.html (accessed September 10, 2010) 
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A low cost (acquired at $USD360) Fermi class GPU with 480 cores and 1GB of DRAM was 
chosen for our test and commands compiled in the C language were used to run the test. 
 

4.1 C Programming with CUDA extensions 
 
The C programming language, developed in 1972 and strongly associated with UNIX, is one of 
the most popular programming languages of all time. In November 2011, it retained the second 
position on a widely regarded ranking list of popular programming languages6

 
. 

As a ‘low-level’, rather than a higher-level (like IDL), language, the C language embodies 
minimalism and can produce very high performance programs. However, its low-level nature, 
that requires intensive programming to communicate directly with computer’s operating system, 
including memory management, makes it less suitable for non-specialist programmers than other 
higher-level languages. Comparatively, IDL, as a high-level language, is easier for non-specialist 
programmers to develop software. 
 
CUDA (an acronym for Compute Unified Device Architecture) is an extension to the C language 
developed by NVIDIA to allow software developers access to the parallel computation elements 
in the CUDA-capable GPUs. Recent versions of the CUDA toolkit also support the use of C++. 
 
The CUDA extensions allow a programmer to define a C function to be run on each of the 
hundreds of GPU cores. This function is generally referred to as a ‘kernel’ to identify it from 
other functions that run on the CPU. A CUDA program typically loads data from the ‘host’ 
computer main memory to high-speed memory on the GPU, runs the kernel in a highly parallel 
form across all the GPU cores and copies the resulting output from the GPU memory back to the 
host memory. Defining a ‘kernel’ function and executing it across a large array of data is known 
as a Single Instruction-Multiple Data (SIMD) approach. As a general rule, employing a kernel by 
the SIMD approach tends to be conceptually simpler to its programmer than managing multiple 
CPU threads. 
 
CUDA toolkits are available for Windows, Linux, and Mac OS X platforms at no cost. These 
toolkits provide GPU drivers, a compiler, and a debugger, for writing and debugging GPU code. 
 

4.2 Software tools for IDL to utilize GPU computing 
 
Some software tools have been developed to facilitate the use of high performance computing 
resources available on modern GPUs by non-specialist programmers who exclusively develop 
software using high-level programming languages. Such programmers include engineers, 
scientists, analysts, and other technical professionals. 
 
GPULib is a product that consists of a library of mathematical functions developed by Tech-X 
Corporation (http://gpulib.txcorp.com) for high performance data analysis using GPUs. The 
                                                 
6 TIOBE Programming Community Index.  http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 

(accessed November 20, 2011) 
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library is built on top of NVIDIA's CUDA platform (described in the previous section). GPULib 
targets engineers and scientists who prefer to focus in their domains of expertise, but must do 
some amount of software development to get their job done using high-level programming 
languages. GPULib allows these users to access high performance computing with minimal 
modification to their existing programs. GPULib can accelerate new applications or be 
incorporated into existing applications with minimal effort because it provides programming 
interfaces for a number of Very High-Level Languages (VHLLs), including IDL. No knowledge 
of GPU programming or memory management is required. This software tool would likely 
benefit the development in future applications of GPU technology for CRW by making GPU 
programming more accessible to scientific programmers. However, the added expense combined 
with an expectation that the GPU performance using this tool would likely lie somewhere 
between that of native IDL and native C with CUDA resulted in a choice to not incorporate this 
product in the test described here. 
 

5. Performance Tests 

5.1 Test Algorithms 
 
Missing values in satellite data are a common problem in remote sensing that can be resolved 
using temporal and/or spatial gap filling techniques.  Data gap filling is performed for locations 
and times for which the measured SST values are deemed unusable, as the result of cloud cover, 
sun glint, large sensor scan angles, etc. This is the most time consuming and computationally 
intensive process among all the computation needs in CRW product development and routine 
product generation. Hence, data gap filling has been chosen for evaluating computational 
performance using GPUs. 
 
For the purpose of testing the platform’s computational abilities, data gap filling was carried out 
using two separate algorithms. The first algorithm is a simple persistence model. At pixels where 
the Pathfinder data are deemed to be unusable, the algorithm persists the prior high quality 
retrieval for that pixel until a newer high quality retrieval is acquired; i.e., 
 
 ( ) ( )tTtT ss =+1 , (1) 
 
where Ts is the SST and t represents time. A benefit of this approach is that all data are 
temperatures that have physically occurred at the location, as opposed to deriving values from 
existing high quality values from different times and/or other locations (e.g., by interpolation). It 
is of note that persistence is currently employed in the NOAA Coral Reef Watch near real-time 
global 50 km SST product (Skirving et al. 2006) and also the ReefTemp product (Maynard et al. 
2008), which monitors temperature-related bleaching risk for the Great Barrier Reef region of 
Australia. 
 
The second algorithm is designed to specifically address one type of data gap: gaps due to cloud 
cover. Where cloud is present, the retrieval value can reflect, in full or in part, the temperature of 
the cloud top, rather than the temperature of the water below. Typically, when clouds persist over 
a patch of water during the daytime, they block the heating from the sun and the temperature of 
the sea-surface decreases. The rate and magnitude of cooling are usually dependent upon the 
factors of air temperature, humidity, and wind. Here we assume that the rate of cooling is 
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dependent only upon and proportional to the difference between the water and air temperatures 
and that the air temperature remains constant during the period of cloud cover: 
 

 ( )as
s TT

dt
dT

−−=
τ
1 , (2) 

 
where Ts is the SST, t is time, τ is the proportionality constant and Ta is the air temperature. 
Integrating equation (2) yields: 
 
 τ/* t

as eTTT −∆+=  (3) 
 
and results in the exponential decay of SST toward the air temperature, where τ is revealed as the 
time constant of the decay and ∆T = Ts-Ta is the initial difference between air and water 
temperatures. In reality, not all low-quality values are due to clouds; however, this second 
algorithm simply calculates temperature values according to this equation to evaluate 
computational performance. 
 
For the purpose of this exercise (i.e., to compare the computational performance of two hardware 
architectures), a constant value is prescribed for the water-air temperature difference along with a 
prescribed decay time constant. These were obtained by observing the temperature reduction 
through cloudy days at the Automated Weather Station of the Australian Institute of Marine 
Science located at Agincourt Reef in January 2009 
(http://data.aims.gov.au/aimsrtds/faces/latestreadings.xhtml). A brief analysis of the data 
provided the values: 
 
 75.0=∆T °C (4) 
 
and 
 
 887.0=τ days. (5) 
 
Using the prescribed value of ∆T, Ta at any pixel can be simply calculated by applying  
Ta =Ts-∆T, where Ts is the most-recently observed temperature at the pixel immediately prior to 
the data gap (t = 0 day). 
 
Clearly, during the actual product development and scientific data analysis, the cause of a data 
gap would be determined first (e.g., using the quality flag) and then a more complex and robust 
algorithm would be used to determine SST to fill the gap. While the methodology presented here 
is overly simplistic, it is, from a computational test perspective, a good basic-level comparison to 
see the performance difference in the two approaches. 
 

5.2 Test Computing Platform 
 
The system used to perform the comparison was a 64-bit Linux (Ubuntu 10.04) platform running 
a custom-built kernel (version 2.6.35) with symmetric multiprocessing enabled. The CPU used 
was an Intel i7 950 at 3.07GHz with 24GB of system RAM. The 24GB RAM was fully 
addressable by a single 64-bit process but memory used never exceeded available memory. 
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It was regarded as important to relieve I/O bottlenecks in retrieving and writing data. To deliver 
sustained, high sequential read performance, the Pathfinder HDF4 input data were placed on a 
Crucial 300GB solid state drive (SSD), whose performance exceeded that of the SATA drive that 
houses the CRW data repository. This SSD was formatted, loaded with the Pathfinder dataset 
then symbolically linked into the data repository directory structure.  
For output of sustained sequential writes, we opted for simplicity and capacity, and used a 1TB 
Western Digital SATA drive. While SSDs commonly exhibit excellent read performance, the 
same cannot be said for write performance and thus we elected to use a drive that exhibited good, 
consistent write performance. We reduced by half the output requirements by transposing each 
SST pixel value from a floating point of actual SST value into a 16-bit integer, using the same 
conversion as used in storing the Pathfinder source data: SST values, which are all greater than   
-3.0 °C, had 3.0 added to obtain all positive values and then multiplied by a factor of 100.0 to 
preserve two decimal places of accuracy. The remaining decimal places were then truncated and 
the values were saved in integer form. 
 
Given the large amounts of data to be transferred, filesystem selection and tuning was considered 
important and investigated. Specifically, comparisons were made between the “ext2” (non-
journaling) and the “ext4” (journaling, and other features) filesystems. A B-tree file system 
(Btrfs) was considered; however, the performance for the kernel version used seemed to not 
generally be on par with more predominant filesystems7

 

. In file read/write testing, ext4 with 
journaling and barriers turned off provided consistently better performance than ext2 (which 
performs no file journaling). It is of note that ext4 supports ‘extents,’ a key benefit for large files 
that dramatically reduces system I/O calls, and this is likely the reason for the superior 
performance. 

Journaling is a feature of modern filesystems where changes are logged to prevent corruption in 
the event of a crash or power loss. However, given performance comparison was the aim of this 
investigation and that the system in use ran on an uninterruptible power supply, we elected to 
disable journaling to take advantage of an approximately 3% enhancement in performance.  
 
To ensure SSD performance did not degrade, and therein affect the results, trim command 
support (for flagging deleted SSD blocks) was enabled in the custom Linux kernel (version 
2.6.35). 
 

5.3 GPU programming 
 
CUDA refers to system memory as host memory and memory on the GPU as device memory. In 
GPU programs, almost always, data is read from disk to host (system) memory and then copied 
to device memory where the GPU performs manipulation of the data. Latest editions of CUDA-
compatible hardware can directly access host memory however NVIDIA strongly recommends 
manipulating data in device memory as performance is significantly faster. Thus, CUDA code 

                                                 
7 EXT4 and Btrfs Regressions in Linux 2.6.36.  

http://www.phoronix.com/scan.php?page=article&item=linux_2636_btrfs&num=1 (accessed September 20, 
2010). 

 
 

http://www.phoronix.com/scan.php?page=article&item=linux_2636_btrfs&num=1�
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typically copies data from host to device, manipulates said data and then copies data back to the 
host (usually for output). Thus, it is important to ascertain whether the GPU memory can 
accommodate an algorithm’s requirements. 
 
To begin with, we wrote simple C functions to read each piece of input data off the hard disk and 
place it into host memory. Using an array size encompassing the dimensions of the data, and 
given a date to read, these functions located the pertinent files, and then read a daily SST, the 
associated quality metadata and the landmask into host memory, respectively. The end result, we 
referred to as the target array and so wrote a function to take the target array from host memory 
and write to a disk file. 
 
The final program contained preprocess, process, and endprocess functions: 

• The preprocess function was called to allocate the required host and device (GPU) 
memory for SST, quality and landmask data; and a target array, equivalent to SST, to 
initially hold the previous day’s gap-filled output, which is updated in both algorithms to 
become the current day’s gap-filled output. For the more-complex test algorithm, device 
memory was also allocated to count the number of days since the most-recent high-
quality value. The preprocess function also loaded the landmask data from disk into both 
host and device memory. 

• The main program then ran a loop to consider each date of the Pathfinder dataset 
duration. Within the loop, the particular date’s SST and quality flag data were loaded into 
host memory and the process function was then called. This function copied SST and 
quality flag data into device memory; performed the test algorithm, updating the target 
array elements in device memory with current day acquisitions or gap-filled values; and 
lastly, copied the target array into host memory. The final step of the loop was to write 
the target array from host memory to a disk file. 

• The endprocess function released the allocated memory on the GPU device. 
 
A separate process function was written for each algorithm with the pertinent process function 
linked in at compile time. Thus all code was the same for the two GPU programs, except for the 
process function. 
 
The most fundamental aspect was that CUDA allows definition of a kernel function. Using 
CUDA syntax, this kernel is called a specific number of times in parallel. As we had 33,554,432 
pixels, once all data were in device memory, we called the kernel function 33,554,432 times. 
CUDA supplies information to each kernel when run, essentially its index number. Our kernel 
function simply took its index number, used that index to extract the pertinent pixel value from 
each array and then wrote the calculated result into the target array index. As the gap filling 
algorithms were purely temporal (i.e., no spatial component), this made the kernel code very 
simple. CUDA makes no guarantees regarding the order or timing in which the kernel is called. 
This was not a concern to us as the algorithms worked on a per-pixel basis, which is compatible 
given the spatially independent nature of both algorithms. 
 

5.4 Test Results 
 
The results were obtained for a complete processing of the entire 1981-2009 Pathfinder dataset 
and included both the file-read and processing time (file-output is not included). Each test was 
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run twice and the average taken. Figure 2 summarizes the results for each algorithm and each 
platform. 
 
For the simplest test (Algorithm 1 – Persistence gap fill), the GPU processing took 164 minutes, 
significantly faster than the CPU test (276 minutes). We believe this test became mostly I/O 
bound and the GPU runtime is almost completely a function of significant I/O requirements. To 
examine this, we profiled the Pathfinder HDF4 reads and determined that approximately 84 
minutes (as reflected by the shaded area in Figure 2) was required to load the dataset into 
memory. Discarding this component of the run-time showed the GPU processing (80 minutes) 
was 2.4-times faster than the CPU processing (192 minutes). 
 
For the second test (Algorithm 2 – Exponential decay gap fill), the difference was stark: the GPU 
completed in 187 minutes, whereas the CPU required 426 minutes. Excluding the portion of time 
required to read the dataset (84 minutes), the GPU (103 minutes) was 3.3-times faster than the 
CPU (342 minutes). 
 

 
Figure 2.  Timed runs of GPU and CPU on two test algorithms (simple persistence and 
exponential decay). The lower shaded area reflects the duration required for extracting 
Pathfinder HDF4 files from disk to host memory, which was measured as a separate serial task. 
Data writing was not easily measurable due to I/O subsystem buffering. 
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6. Discussions and Conclusions 
 
The GPU method demonstrated a significant performance advantage over the CPU method. This 
was not unexpected but the difference is interesting. Although the exponential decay algorithm 
was only one order of complexity greater than the persistence algorithm, the GPU demonstrated 
a significantly increased performance advantage over the CPU. We surmise that as more 
complex algorithms (and larger datasets; e.g., 1 km resolution) are used, a GPU approach is 
likely to show even greater improvements. 
 
We believe that as the data are compressed, the HDF4 library uses a single processor thread to 
uncompress data and this possibly contributes to a significant element of the run times. A 
different mechanism to load data may well reduce total run times substantially, however the 
focus of this investigation was a computational comparison and these detailed I/O optimizations 
are a consideration for future work. We simply state that both processor performance and I/O 
subsystem performance have important impacts on the complete duration required. 
 
However it is important to note that a GPU approach is not a ‘silver bullet’ and that various 
constraints exist: 
 

• GPU memory is currently limited to 6GB per card (our GPU model had 1GB total 
memory). While this was not an issue for the algorithms presented here, it may be a 
constraint for other memory-intensive algorithms. 

• As all calculations occur on the GPU processors and in GPU memory, host system 
libraries cannot be used. GPU toolkits provide math libraries for common calculations, 
however any custom function library would need to be ported for GPU use. This does not 
impact the needs of Coral Reef Watch. 

• As algorithms scale in complexity, the register requirements per processor increase. As 
this resource is shared across processors, less threads can be executed in parallel. 
However, the likelihood is that the number of threads able to be run will remain orders-
of-magnitude higher than that available on a multi-core CPU. 

• When running a custom program, the GPU can also drive the user’s desktop windows. 
However for debugging, the GPU must be dedicated to the debugging process and cannot 
run the user’s desktop environment. This means that for debugging (a regular 
programming task), either a separate, dedicated GPU must be used in the user’s desktop 
computer or a server is used where the desktop environment is not required during 
debugging. 

 
The key disadvantage of GPU computing is that programming in C is more complex than 
programming in IDL as the former’s requirements are more rigorous. An ideal programming 
solution would entail a dynamically-typed, interpreted language with multi-threaded support for 
running functions (‘kernels’) on GPU hardware. This would allow scientists a flexible and high-
performance means to analyze large datasets. However a ‘simple to use’ language with the 
ability to take full advantage of GPU capability is not yet present.  
 
Despite all the above concerns, and especially now that GPUs are becoming ubiquitous in the 
CPU die of new processors, the time-saving benefits of GPU performance are significant. In the 
case of this experiment, a 2-3 hour task can be undertaken a few times a day, whereas a task of 
7+ hours tends to be relegated to an overnight or all-day run. The impact means scientific dataset 
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analysis can occur at a pace dictated by the science rather than at pace limited by computational 
ability. For the current and future direction of Coral Reef Watch and other NESDIS programs, 
processing higher-resolution datasets and increasingly complex algorithms necessitate 
consideration of GPU technology to gain substantial performance benefits at a reasonable cost. 
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NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS 
 
 

  The National Oceanic and Atmospheric Administration was established as part of 
the Department of Commerce on October 3, 1970.  The mission responsibilities of 
NOAA are to assess the socioeconomic impact of natural and technological changes in 
the environment and to monitor and predict the state of the solid Earth, the oceans and 
their living resources, the atmosphere, and the space environment of the Earth. 
 

 The major components of NOAA regularly produce various types of scientific and 
technical information in the following types of publications 

 
PROFESSIONAL PAPERS – Important 
definitive research results, major 
techniques, and special investigations. 
 
CONTRACT AND GRANT REPORTS 
– Reports prepared by contractors or 
grantees under NOAA sponsorship. 
 
ATLAS – Presentation of analyzed data 
generally in the form of maps showing 
distribution of rainfall, chemical and 
physical conditions of oceans and 
atmosphere, distribution of fishes and 
marine mammals, ionospheric 
conditions, etc. 

TECHNICAL SERVICE 
PUBLICATIONS – Reports containing 
data, observations, instructions, etc.  A 
partial listing includes data serials; 
prediction and outlook periodicals; 
technical manuals, training papers, 
planning reports, and information 
serials; and miscellaneous technical 
publications. 
 
TECHNICAL REPORTS – Journal 
quality with extensive details, 
mathematical developments, or data 
listings. 
 
TECHNICAL MEMORANDUMS – 
Reports of preliminary, partial, or 
negative research or technology results, 
interim instructions, and the like. 
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